Champsodon spp. (Perciformes, Champsodontidae) in the Eastern Mediterranean: How many species are there?

Ofer Gon, Menachem Goren, Daniel Golani, & Gavin Gouws

South African Institute for Aquatic Biodiversity, Grahamstown, South Africa (o.gon@saiaab.ac.za & g.gouws@saiaab.ac.za)

Department of Zoology and The Steinhardt Museum of Natural History, Tel-Aviv University, Israel (gorenmm@tauex.tau.ac.il)

Department of Ecology, Evolution and Behavior, Hebrew University, Israel (dani.golani@mail.huji.ac.il)

Champsodontidae

A family of small Indo-Pacific fishes comprising 13 species in a single genus, *Champsodon* (Fig. 1), most recently revised by Nemeth (1994). Over the last six years three species of this genus, believed to be Lessopcean migrants, have been reported from the Eastern Mediterranean, namely *C. nudivittis*, *C. vorax* and *C. capensis* (Çiçek and Bilecenoglu 2009, Bariche 2010, Dalyan et al. 2012, respectively).

Why are we doing this study?

One or more of the reported species from the Eastern Mediterranean may have been misidentified because:

- Species of this genus are very similar morphologically and there are few non-overlapping meristic and morphometric characters
- Nemeth’s (1994) key relies heavily on squamation, but little is known about the ontogeny and intraspecific variation in scale characters
- Creases and folds of skin on the chin can be mistaken for scales
- The illustrations in the Mediterranean reports are mostly of poor quality making verification of authors’ observations difficult
- Older identifications from the Red Sea may not be reliable, as demonstrated by Goren et al. (2011): “...twenty specimens previously identified as *C. omanensis* by Dor (1970) were found to be in fact *C. nudivittis*”

Consequently, the number of migrant species and their identity require confirmation

C. capensis

- Not reported from the Red Sea by Nemeth (1994)
- Dalyan et al. (2012) did not provide specimen sizes for the images in their Fig. 2, making it impossible to relate scale cover to size
- There is disagreement in Dalyan et al. (2012) regarding the minimum extent of abdominal scales cover between the text (8-41%) and Table 1 (0-41%), making the average value in Table 1 questionable. This average (15.5% of the belly area) is much smaller than would be expected given the size range of their fish. In the lectotype (62.0 mm SL) about 65% of the abdominal area is scaled (Fig. 2a)
- Dalyan et al. (2012) described the triangular scale patch between the pectoral and pelvic fin bases as not extending posteriorly. In the lectotype and two largest paratypes (44.25-45.1 mm SL) this scale patch clearly extends posteriorly beyond V base; in the lectotype it connects with the abdominal scales (Fig. 2b)
- The size of the illustrated breast scale patch in Dalyan et al. (2012) is smaller than in the lectotype (Fig. 2c), which is presumably smaller than their photographed fish

C. nudivittis

- Not reported from the Red Sea by Nemeth (1994)
- Area between pectoral and pelvic fin bases naked (holotype), or with less than 10 scales
- Breast naked or with small patch of scales (holotype)
- Mediterranean specimens usually have more scales in these two areas (Fig. 3a, b, respectively)

C. vorax

- This species is not known from the Western Indian Ocean
- Assuming that Bariche (2010) correctly identified the scales on the chin, his description of fins peppered with melanophores (pale in *C. vorax*) suggests that his fish could be *C. omanensis*.

Genetics

- A preliminary analysis of diversity within Mediterranean *Champsodon* was conducted using the barcoding fragment of the cytochrome c oxidase subunit I (COI) gene.
- DNA was extracted from specimens identified as *C. nudivittis* from the Mediterranean, the COI gene region was amplified by PCR and sequenced using standard approaches. Additional data of *C. nudivittis* and specimens identified as *C. snyderi* (in order to contextualise relationships and divergences) were obtained from GenBank.
- A neighbour-joining tree (Fig. 4), based on the analysis of 507 bp of COI, revealed two separate lineages of *C. nudivittis* in the Mediterranean.
- Most specimens were genetically similar (0–0.6% sequence divergence) and were included in single cluster.
- A second individual (GenBank KF6564399) from the Mediterranean was highly divergent (22.2–22.6% sequence divergence) and appeared to be more closely allied to *C. snyderi* (JQ681321). This specimen was still 15.2% divergent from the latter and 22.0% divergent from another specimen (NCC20473), tentatively identified as *C. snyderi*.
- Parsimony analysis (not shown) revealed the same associations, with a bootstrap of 100% for the relationship among this single *C. nudivittis* specimen and *C. snyderi*.
- Although the high divergences reflect the incomplete taxonomic sampling of the present analysis, evidence suggests the occurrence of two distinct taxa, referred to as *C. nudivittis* in the Mediterranean and highlights some of the issues discussed above.